Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oral Health Prev Dent ; 22(1): 73-79, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38305425

RESUMO

PURPOSE: This study aimed to investigate the inhibitory effect of a PRG Barrier Coat on biofilm formation and structure by Streptococcus mutans and propose an effective method for preventing dental caries. MATERIALS AND METHODS: Streptococcus mutans MT8148 biofilms were obtained from hydroxyapatite disks with and with- out a PRG Barrier Coat. Scanning electron microscopy (SEM) was used to observe the 12- and 24-h-cultured biofilms, while reverse-transcription polymerase chain reaction (qRT-PCR) was used to quantify caries-related genes. Biofilm adhe- sion assessments were performed on glass. Statistical analysis was performed using a two-sample t-test. RESULTS: A statistically significant difference in Streptococcus mutans biofilm adhesion rate was observed between the con- trol and PRG Barrier Coat-coated samples (p < 0.01). However, there was no statistically significant difference in total bacter- ial count or biofilm volume (p > 0.05). SEM revealed that the PRG Barrier Coat inhibited biofilm formation by Streptococcus mutans. Real-time RT-PCR revealed that the material restricted the expression of genes associated with caries-related bio- film formation. However, the suppression of gtfD and dexB differed from that of other genes. CONCLUSION: PRG Barrier Coat suppressed biofilm formation by Streptococcus mutans by inhibiting the expression of in- soluble glucan synthase, which is associated with primary biofilm formation. The material also affected gene expression and altered the biofilm structure. Tooth surface-coating materials, such as PRG Barrier Coat, may improve caries preven- tion in dental practice.


Assuntos
Resinas Compostas , Cárie Dentária , Streptococcus mutans , Humanos , Streptococcus mutans/genética , Cárie Dentária/prevenção & controle , Biofilmes , Expressão Gênica
2.
Biochimie ; 220: 99-106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38159715

RESUMO

We recently reported that the activities of dipeptidyl-peptidase (DPP)7 and DPP11, S46-family exopeptidases were significantly elevated by the presence of prime-side amino acid residues of substrates caused by an increase in kcat [Ohara-Nemoto Y. et al., J Biol Chem 298(3):101585. doi: 10.1016/j.jbc.2022]. In the present study, the effects of prime-side residues on Glu-specific endopeptidase I/GluV8 from Staphylococcus aureus were investigated using a two-step cleavage method with tetrapeptidyl-methycoumaryl-7-amide (MCA) carrying P2- to P2'-position residues coupled with DPP11 as the second enzyme. GluV8 showed maximal activity toward benzyloxycarbonyl (Z)-LLE-MCA, while the effects of hydrolysis of substrates one residue shorter, such as acetyl (Ac)-Val-Glu- and Leu-Glu-MCA, were negligible. Nevertheless, activity towards Ac-VE-|-ID-MCA, a substrate carrying P1' and P2' residues, emerged and reached a level 44 % of that for Z-LLE-MCA. Among 11 Ac-HAXD-MCA (X is a varied amino acid), the highest level of activity enhancement was achieved with P1'-Leu and Ile, followed by Phe, Val, Ser, Tyr, and Ala, while Gly and Lys showed scant effects. This activation order was in parallel with the hydrophobicity indexes of these amino acids. The prime-side residues increased kcat/KM primarily through a maximum 500-fold elevation of kcat as well as S46-family exopeptidases. The MEROPS substrate database also indicates a close relationship between activity and hydrophobicity of the P1' residues in 93 N-terminal-truncated substrates, though no correlation was observed among all 4328 GluV8 entities examined. Taken together, these results are the first to demonstrate N-terminal exopeptidase activity of GluV8, considered to be prompted by hydrophobic P1' amino acid residues.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Staphylococcus aureus , Staphylococcus aureus/enzimologia , Especificidade por Substrato , Aminoácidos/metabolismo , Aminoácidos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Exopeptidases/metabolismo , Exopeptidases/química , Exopeptidases/genética , Serina Endopeptidases
3.
FEMS Microbiol Lett ; 365(22)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203018

RESUMO

Dipeptidyl peptidase (DPP) 4, DPP5, DPP7 and DPP11, expressed in the periplasmic space, are crucial for energy production for Porphyromonas gingivalis, an asaccharolytic bacterium that causes periodontal disease. Bacterial DPP4 seems to be involved in regulation of blood glucose level via degradation of incretins. The present study aimed to identify four dpp orthologs in oral microbiota by database searches, and their enzymatic activities in periodontopathic and cariogenic bacteria, as well as oral specimens were determined. Search in the databases suggested that 43 species of 772 taxa possess dpp4 and other dpp genes. Most species are in the genera Bacteroides, Capnocytophaga, Porphyromonas, Prevotella and Tannerella, indicating a limited distribution of dpp orthologs in anaerobic periodontopathic rods. In accordance with those results, activities of all four DPPs were demonstrated in P. gingivalis, Porphyromonas endodontalis and Tannerella forsythia, while they were negligible in Treponema denticola, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. Furthermore, DPP activities were also detected in subgingival dental plaque at different intensities among individual specimens, while DPP4 activity presumably derived from human entity was solely predominant in saliva samples. These findings demonstrated that DPP activities in dental plaque serve as potent biomarkers to indicate the presence of periodontopathic bacteria.


Assuntos
Infecções por Bacteroidaceae/microbiologia , Placa Dentária/microbiologia , Dipeptidil Peptidase 4/metabolismo , Microbiota/genética , Porphyromonas gingivalis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Dipeptidil Peptidase 4/genética , Humanos , Incretinas/metabolismo , Boca/microbiologia , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/isolamento & purificação
4.
Biochimie ; 147: 25-35, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29080830

RESUMO

Peptidase family S46 consists of two types of dipeptidyl-peptidases (DPPs), DPP7 and DPP11, which liberate dipeptides from the N-termini of polypeptides along with the penultimate hydrophobic and acidic residues, respectively. Their specificities are primarily defined by a single amino acid residue, Gly673 in DPP7 and Arg673 in DPP11 (numbering for Porphyromonas gingivalis DPP11). Bacterial species in the phyla Proteobacteria and Bacteroidetes generally possess one gene for each, while Bacteroides species exceptionally possess three genes, one gene as DPP7 and two genes as DPP11, annotated based on the full-length similarities. In the present study, we aimed to characterize the above-mentioned Bacteroides S46 DPPs. A recombinant protein of the putative DPP11 gene BF9343_2924 from Bacteroides fragilis harboring Gly673 exhibited DPP7 activity by hydrolyzing Leu-Leu-4-methylcoumaryl-7-amide (MCA). Another gene, BF9343_2925, as well as the Bacteroides vulgatus gene (BVU_2252) with Arg673 was confirmed to encode DPP11. These results demonstrated that classification of S46 peptidase is enforceable by the S1 essential residues. Bacteroides DPP11 showed a decreased level of activity towards the substrates, especially with P1-position Glu. Findings of 3D structural modeling indicated three potential amino acid substitutions responsible for the reduction, one of which, Asn650Thr substitution, actually recovered the hydrolyzing activity of Leu-Glu-MCA. On the other hand, the gene currently annotated as DPP7 carrying Gly673 from B. fragilis (BF9343_0130) and Bacteroides ovatus (Bovatus_03382) did not hydrolyze any of the examined substrates. The existence of a phylogenic branch of these putative Bacteroides DPP7 genes classified by the C-terminal conserved region (Ser571-Leu700) strongly suggests that Bacteroides species expresses a DPP with an unknown property. In conclusion, the genus Bacteroides exceptionally expresses three S46-family members; authentic DPP7, a new subtype of DPP11 with substantially reduced specificity for Glu, and a third group of S46 family members.


Assuntos
Bacteroides/enzimologia , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Sequência de Aminoácidos , Hidrólise , Especificidade da Espécie
5.
Genome Announc ; 5(33)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28818910

RESUMO

We report the draft genome sequence of Streptococcus mutans strain HM isolated from a 4-year-old girl with infective endocarditis. The genomics information will provide information on the genetic diversity and virulence potential of S. mutans strain HM.

6.
PLoS One ; 9(12): e114221, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25494328

RESUMO

Dipeptidyl peptidases (DPPs) that liberate dipeptides from the N-terminal end of oligopeptides are crucial for the growth of Porphyromonas species, anaerobic asaccharolytic gram negative rods that utilize amino acids as energy sources. Porphyromonas endodontalis is a causative agent of periapical lesions with acute symptoms and Asp/Glu-specific DPP11 has been solely characterized in this organism. In this study, we identified and characterized two P. endodontalis DPPs, DPP5 and DPP7. Cell-associated DPP activity toward Lys-Ala-4-methylcoumaryl-7-amide (MCA) was prominent in P. endodontalis ATCC 35406 as compared with the Porphyromonas gingivalis strains ATCC 33277, 16-1, HW24D1, ATCC 49417, W83, W50, and HNA99. The level of hydrolysis of Leu-Asp-MCA by DPP11, Gly-Pro-MCA by DPP4, and Met-Leu-MCA was also higher than in the P. gingivalis strains. MER236725 and MER278904 are P. endodontalis proteins belong to the S9- and S46-family peptidases, respectively. Recombinant MER236725 exhibited enzymatic properties including substrate specificity, and salt- and pH-dependence similar to P. gingivalis DPP5 belonging to the S9 family. However, the kcat/Km figure (194 µM-1·sec-1) for the most potent substrate (Lys-Ala-MCA) was 18.4-fold higher as compared to the P. gingivalis entity (10.5 µM-1·sec-1). In addition, P. endodontalis DPP5 mRNA and protein contents were increased several fold as compared with those in P. gingivalis. Recombinant MER278904 preferentially hydrolyzed Met-Leu-MCA and exhibited a substrate specificity similar to P. gingivalis DPP7 belonging to the S46 family. In accord with the deduced molecular mass of 818 amino acids, a 105-kDa band was immunologically detected, indicating that P. endodontalis DPP7 is an exceptionally large molecule in the DPP7/DPP11/S46 peptidase family. The enhancement of four DPP activities was conclusively demonstrated in P. endodontalis, and remarkable Lys-Ala-MCA-hydrolysis was achieved by qualitative and quantitative potentiation of the DPP5 molecule.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Isoenzimas/metabolismo , Porphyromonas/enzimologia , Sequência de Aminoácidos , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Ensaio de Imunoadsorção Enzimática , Isoenzimas/química , Porphyromonas/classificação , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...